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Vaccination, whenever possible, is the most effective way
to harness and prevent the spreading of a disease. Besides
the protection bestowed at individual level, vaccination hin-
ders as well the spreading at whole population level. Op-
timally, the individual decisions to vaccine would lead to
the immunization of the entire population. However, instead
of taking the vaccine, individuals may also rely on the oth-
ers will to vaccinate. However, if too many of these free
riders are present in the population, herd immunity is lost.
This social dilemma characterizes the voluntary vaccination
problem.

For analyzing social dilemmas, game theory is an ade-
quate tool. Previous studies have combined game theory and
epidemic spreading, developing coevolutionary models, in
order to study the vaccination uptake [1]. Nevertheless, the
analytical work has mainly focused on vaccination against
pediatric diseases, such as measles, for example. In contrast,
most of the articles having tackled the vaccination uptake
against the seasonal influenza relied heavily on numerical
simulations [2, 3, 4, 5], which makes it difficult to under-
stand the underlying processes. For this reason, we set up a
model incorporating the main features of the previous work,
but that in addition allows for an analytical mean field solu-
tion [6].

The model is organized in the following way. We con-
sider the fraction of infected agents in the previous year’s
influenza outbreak as an input of the model. From there,
we set up a vaccination game, whose stationary state will
define the vaccination coverage of the population. A subse-
quent outbreak of the disease with transmission probability
β is then considered in the population. We obtain analytical
expressions for the vaccine coverage y∗ and the epidemic
thresholds.

A crucial property of vaccines against the seasonal in-
fluenza is their effectiveness. The constant mutation of the
virus strains makes it difficult to anticipate the subsequent
season’s form of the virus. Vaccine efficiency is usually only
between 30% and 60%. Interestingly, the system shows a
big tolerance regarding the vaccine quality, γ. As a matter
of fact, a decrease in the effectiveness of the vaccine can
even promote vaccination as one can see in Fig. 1. At first
glance, the increase in vaccine uptake as effectiveness de-
creases may seem counterintuitive. However, this phenom-
ena stems from the fact that the probability of getting in-
fected becomes non negligible. In other words, as the vac-
cine efficiency decreases there is a competition between the
increasing risk of getting infected and the reduced protection
bestowed by the vaccine itself. Furthermore, we are able to
show that the maximal vaccination coverage is reached when
a further decrease in the vaccine effectiveness increases the
infection probability by a larger amount for vaccinated than
for not vaccinated agents. Hence, what may look as an ir-
rational act at first sight is —instead— a rational individual
decisions of agents striving to mitigate the infection pres-
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Fig. 1. Vaccination coverage at equilibrium y∗ as a function
of vaccine effectiveness (1 − γ). A perfect vaccine corre-
sponds to γ = 0. Each line represents a different value of
infection probability β. The maximum coverage y∗max is de-
noted by a point and the dashed line delimits the tolerance
range. The inset presents the maximum coverage y∗max as
a function of infectivity β. The color highlights the region
where vaccination takes place or not.

sure. In this sense, the corresponding effectiveness of the
vaccine (1 − γ) as the maximal vaccine coverage y∗max is
reached, may be seen as a tolerance threshold of the system.

Additionally to the high relevance of vaccine effective-
ness in the voluntary vaccine uptake, we are recently wit-
nessing the emergence of widespread anti-vaccine move-
ments, which are mainly fueled by misconceptions and mis-
chievous news about vaccines. A way for incorporating
these movements in the model is the introduction of zealots;
agents who unconditionally do not take the vaccine. Inter-
estingly, the presence of the zealots has a non trivial detri-
mental effect on the aforementioned tolerance to decreasing
vaccine quality.
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