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Effective Gaussian diffusion of optically trapped spheres along time-scales

Pablo Domı́nguez-Garcı́a1, László Forró2, and Sylvia Jeney2
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It is widely accepted that the random displacements of a
Brownian particle follow a Gaussian distribution. The prob-
ability distribution P (r, t) of the displacements of the par-
ticle is named as propagator or van Hove autocorrelation
function [1]. Mathematically it is expressed through

P (r, t) =
1

[4πDG(τ) t]d/2
exp

(
− ∆r2

4DG(τ) t

)
, (1)

where ∆r = r(t+τ)−r(t) is the displacement, τ is the lapse
time between jumps, d is the system dimension. In Eq. (1),
we define an effective Gaussian diffusion coefficient DG(τ),
which depends on the time-lapse η of each displacement, but
does not depend of the absolute time t. However, deviations
from the Gaussian behavior should be expected to observed
when the particle moves in complex fluids [2], or in a lower
time-scale where the hydrodynamical effects are relevant [3,
4].

In this work, we study experimentally, through optical
spectroscopy and optical trapping [5], the Brownian motion
over six orders of magnitude in the time-scale, with a min-
imum time-step of 0.5 µs, of optically trapped melamine
resin micro-sized spheres immersed in Newtonian and vis-
coelastic fluids. We obtain the Gaussian profiles of the dis-
placements ∆r for every fluid, taking into account that the
effective diffusion coefficient depends of the time-lapse τ .
The observations are in agreement with the Gaussian be-
haviour defined by Eq. (1), but DG(τ) behaves differently
depending on the time scale. For Newtonian fluids, we
observe that DG(τ) ' D0 in the diffusive regime, where

D0 is the usual Stokes-Einstein diffusion coefficient, D0 =
kBT/6πηa. Deviations from that constant value are ob-
served at higher time-scales where the external optical forces
are predominant, and also at lower time-scales, in the trans-
diffusive or pre-ballistic regime. While the former behavior
can be explained through the solution of the Fokker-Plank
equation under a harmonic potential [6, 7], the latter is prob-
ably related to a more complex and generalized solution
of the Fokker-Plank equation which includes ballistic and
transdiffusive regimes [8].
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