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Nanoscale hydrodynamics in periodic and confined planar geometries
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The behavior of a fluid at large scales is governed by
the well-known Navier-Stokes equations of hydrodynamics.
At the nanoscale these equations are no longer appropri-
ate because the fluid starts to behave in a non-local way in
both space and time, leading to Generalized Hydrodynam-
ics [1, 2, 3, 4]. Correlation functions of hydrodynamic vari-
ables are defined in reciprocal space and measured in molec-
ular dynamics (MD) simulations, thus providing a wealth
of information about the behavior of fluids at small scales
[5, 6, 7].

In this work, we address the problem of hydrodynam-
ics at small scales of a fluid in periodic and confined pla-
nar geometries. While Generalized Hydrodynamics usually
assumes rotational and translational invariance, in confined
systems these symmetries are lost. For this reason, we work
in real space and define the hydrodynamic variables in terms
of slabs [8, 9]. We choose as relevant variable the transverse
momentum after checking through MD simulations that the
coupling between this component and the rest of hydrody-
namic variables (density, rest of momentum components and
energy) is negligible.

Mori projector technique is used to construct an exact lin-
ear equation for the correlation function of the transverse
momentum, which contains a memory kernel. A clear sep-
aration of time scales is invoked in such a way that an ap-
proximate Markovian differential equation is obtained. The
distinctive feature of the Markovian approximation in Mori

theory is to predict a (matrix) exponential decay of the cor-
relation. We show that this prediction is satisfied in our sim-
ulations after a time of molecular size has elapsed. We also
show that after this time, a local approximation seems to be
sufficient for describing the decay of the momentum corre-
lation.

This methodology is followed in both unconfined and
confined fluids, allowing us to discuss the effects of solid
walls on the fluid.
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