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Structural and transport properties of confined water in nano geometries
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Water is undoubtedly the most relevant molecule for liv-
ing organisms both at a macroscopic scale —the human
body consists of 65-70 % of water and a tree of 20-70 %—
and at a microscopic scale —a human cell consists of 70-
80 % of water and a plant one of 60-70 %. At the latter
scale, the features of confined water, that differ with respect
of bulk water, play a vital role and understanding them could
be of interest in the development of nanomaterials such as
nanochannels. In particular, under confinement, water has
a different behaviour than in bulk showing a different phase
diagram [1] that is still under study. It is important to study
water at nanoscale to understand biological/industrial pro-
cesses such us ions exchange in cells or water desalina-
tion [5, 6], respectively.

Computer simulations based on molecular dynamics have
shown to be a reliable and powerful tool to study the fea-
tures, from a molecular approach, of nanoconfined water. At
these small scales, experimentalists may find issues to mea-
sure some properties or even to work at some conditions of
temperature. That is the reason why molecular simulation is
a very useful technique to find out how confinement changes
the water properties.

In the last decade, works focused on understanding trans-
port properties of confined water have not shown conclusive
results [7, 8, 9, 10]. Our goal is to set up numerical simu-
lations that could be considered as a benchmark for future
works of confined water.

In this work, by means of molecular dynamics simula-
tions, we study TIP4P/2005 [4] water confined inside nano-
materials (both hydrophobic and super-hydrophobic) such as
two parallel sheets and single wall carbon nanotubes (SWC-
NTs) with a wide diameter range. Structural an dynamical
properties, such as diffusion, density, viscosity and the num-
ber of formed/broken hydrogen bonds were computed and
analysed at several temperatures taking into account the fi-
nite size corrections proposed by theoretical studies [3, 2].

Our preliminary results shown that key factors such as hy-
drogen bonds or viscosity allow water to diffuse faster when
confined down to a ”limit” diameter (≈ 2 nm). If water is
confined under this ”limit” size, it trends to adopt chain-like
structures that make its dynamic slows-down.
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Fig. 1. From left to right: Two parallel graphene sheets
having confined water inside, four SWCNTs confining wa-
ter and with diameter from 1.3 to 7 nm. Carbon atoms are
represented by cyan spheres and thewater molecules by red
(oxygen) and white (hydrogen) spheres.
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