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We consider diffusion-controlled reactions (reactions in
which the typical reaction time is short in comparison to
the typical time spent by a pair particles before reacting)
which take place on a one-dimensional expanding medium.
In particular, we consider the irreversible single-species co-
alescence reaction A + A — A, and the irreversible single-
species annihilation reaction A + A — @.

These reactions have been extensively studied in static
media. It is well known that a simple mean-field approach
does not work when the mixing of the reactants is impaired
by, e.g., the low dimensionality of the medium. A method
that is able to cope with this scenario for a one-dimensional
medium is the Interparticle Distribution Function (IPDF)
method [1]. Here we generalize this method to the case of
uniformly expanding media. We discover that the mixing of
diffusing particles and the corresponding reaction kinetics
are, in some cases, largely modified by the expansion of the
medium.

The mathematical complexities induced by the expansion
can be reduced to a large extent if one works with comoving
coordinates. Let z = y(0) be the coordinate of a fixed point
at the initial time ¢ = 0. Due to the expansion, this fixed
point changes its position, y(t) being its coordinate at time
t. If the expansion of the medium is uniform y(t) and x
are related by y(t) = a(t)x, where a(t) is the scale factor
and a(0) = 1. The quantity z = y/a(t) is the comoving
coordinate associated with the position y at time ¢.

The interparticle probability density function p(z,t) is
defined as the density of probability of finding a gap of
size x (in comoving coordinates) between two neighbor-
ing particles. Let us define the auxiliary function g(x,t) =
p(z,t)/c(t), where c(t) is the number density of particles in
comoving space, and let us define the Brownian conformal

time 7(¢) as
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It is possible to prove [2] that the auxiliary function ¢(z, t)
satisfies a standard diffusion equation
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where D is the diffusion constant of the reacting particles.
This is a key result because from ¢(z,¢) we can find the
survival probability S(t) of a particle, the structure of the
system (arrangement of particles), etc. In particular,

o(t) = c(0)S(0) = [ gty )

In some cases we can get exact solutions from these expres-
sions. For example, for a completely random initial distri-
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Fig. 1. Survival probability S(t) vs. 22 = 2¢2D(t) for co-
alescence. The symbols correspond to simulation results for
power-law expansions with tg = 1000 and v = 2,3/4, —2,
and exponential expansions with H = 107 and H =
—107%. Dashed lines correspond to the limiting value S, of
the survival probability for v = 2 (S &~ 0.823), v = 3/4
(Seo ~ 0.644), and H = 10~ (So =~ 0.523). The solid
line is the exact solution in Eq. (4).

bution of particles (Poisson distribution) one obtains

S(t) = e erfe(2), (4)

with z = ¢p4/2D7(t) for coalescence reactions and z =
2¢9+/2D7(t) for annihilation reactions. In Fig. 1 we com-
pare, for coalescence reactions, S(¢) obtained by means of
Eq. (4) with simulation results. The agreement is excellent.
It is clear that the behaviour of S(¢) depends on 7(t), or
equivalently, on the expansion scale factor a(t). It turns out
that 7(t — 00) = 7o, < oo for some (fast) expansions, e.g.,
a power-law expansion a(t) = (1 +t/to)” withy > 1/2 or
an exponential expansion a(t) = exp(Ht) with H > 0. In
these cases the survival probability of the reacting particles
tends to a finite value at long times, S(t — 00) = S > 0,
in other words, the expansion is so fast that the reactions stop
prematurely and the spatial distribution of particles freezes
before reaching the fully self-ordered state. This behavior
is similar to the freeze-out behaviour displayed by the early
universe in the context of cosmology.
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