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On a graph-theoretical structure of real numbers
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In this work, we study properties of real numbers through
a set of graphs named Farey graphs, which we show are in
bijection with real numbers in [0, 1]. The Farey graphs can
be navigated by an operator R. This operator induces a dy-
namics and we make a classification of dynamical attractors
(fixed points, periodic or aperiodic orbits and chaos) which
has a correspondence in the real numbers. Furthermore, we
can define an entropy on Farey graphs, and its maximization
connects with the previous dynamical classification.

The Farey sequence of order n is the ordered set of ir-
reducible fractions between [0, 1] whose denominators do
not exceed n. The Farey sequence Fn has a representation
called Farey Tree (see Fig. 1). When n → ∞, the Farey
sequences are the real numbers between [0, 1].

The set of Farey graphs is constructed recursively using a
initial graph (two nodes joined by a link) and an inner oper-
ation named concatenation (see Fig. 2). We prove that there
exists a bijection between the Farey graphs and Farey frac-
tions, ie, between the interval [0, 1]. This implies that the
Farey graphs have an order and we can represent them in a
tree named Farey Graph Tree.

The operator R is a map of the set of Farey graphs into
itself removing the nodes with degree k = 2 and merging
its two incident edges into a single edge. R has an alge-
braically equivalent operator in real numbers: the operator
T : [0, 1]→ [0, 1]

T (ω) =

{
ω

1−ω if ω ≤ 1/2

1− 1−ω
ω if x > 1/2

. (1)

The dynamics of this operator induces a classification of real
numbers into families:

1. Fixed Points: The point ω = 0 is an attractor for all
rational initial conditions.

2. Unstable Periodic Orbits: The quadratic irrationals be-
long to a cycle, i.e, they verify:

∃m ≥ 2 : T (m)(ω) = ω iff ω is quadratic irrational.

3. Chaos: All other initials conditions (e.g, non-quadratic
algebraic irrational and trascendental numbers).

Finally, we are interested in a particular graph entropy
over the degree distribution P (k). We compute this entropy
for all graphs with at least 1000 nodes (see Fig. 3). We prove
that the most Farey-entropic graph corresponds to the frac-
tional part of the Golden ratio. Other form a periodic orbit
and they correspond to the quadratic irrationals.
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Fig. 1. The first five layers of Farey Tree.

Fig. 2. An illustration of the concatenation operation.
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Fig. 3. Number entropy h(ω) = −
∑

P (k) logP (k) for
G = Gω .


