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Dynamical phase transitions in dissipative strongly-interacting atomic ensembles

Carlos Pérez-Espigares1, Juan P. Garrahan1, Igor Lesanovsky1, and Ricardo Gutiérrez1,2
1School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems,

University of Nottingham, Nottingham NG7 2RD, UK
2Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

The physics of highly-excited (Rydberg) atoms is gov-
erned by blockade interactions that hinder the excitation of
atoms in the proximity of a previously excited one. In the
limit of strong dephasing, the evolution is given by a clas-
sical master equation with configuration-dependent rates for
transitions between the ground state and the excited state [1].
Those rates contain a single parameter R, which gives the
length of the blockaded region around an excited atom [2].
From this blockade, which is reminiscent of the excluded
volume effects of soft condensed matter, a space-time dy-
namic heterogeneity similar to what is observed in the dy-
namics of glass-forming systems arises.

We establish theoretically the existence of a glassy dy-
namical regime in a dissipative Rydberg gas, which origi-
nates from a phase coexistence at a first-order phase transi-
tion, see Fig. 1. In our analysis, we consider the activity per
unit time k = K/t, where K counts the number of transi-
tions in a trajectory of duration t, as the order parameter. The
transition occurs between an active phase of low density in
which dynamical processes take place on short timescales,
and an inactive phase in which excited atoms are dense and
the dynamics is highly arrested. The control parameter con-
jugate to k is the field s, which “tilts” the systems towards
more (if s < 0) or less (if s > 0) active dynamics. The
inactive space-time regions that appear as the transition is
approached from the active side, are “bubbles of inactiv-
ity”, corresponding to a manifestation in trajectories of fluc-
tuations associated with the dynamical first-order transition
(cf., e.g., vapor bubbles in a liquid near liquid-vapor coex-
istence). The natural dynamics (s = 0) lies precisely at the
coexistence point between the two phases.

We probe the transition through the numerical diagonal-
ization of the relevant dynamical generator for finite sizes.
Furthermore, a mean-field approach gives us analytical in-
sight into the transition, and allows us to explore the rele-
vant phase diagram as function of the blockade length R,
and also the decay rate κ of the excited state, which is a pa-
rameter of great experimental relevance. For small R, the
transition is shown to end at a critical point beyond which a
sharp crossover is observed, see Fig. 2. A sufficiently strong
decay also smooths out the transition, the critical point cor-
responding to a value of κ that is experimentally accessible
in modern cold atoms experiments.

Not only have we unveiled a dynamical phase transition
from which a previously observed complex dynamics stems,
but our results will also be useful in the development of pro-
tocols for engineering Rydberg interactions with the aim of
attaining specific dynamical regimes.
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Fig. 1. Dynamical first-order phase transition underlying
the dynamics of dissipative Rydberg gases. Activity k(s)/L
as a function of the tilting field s and the blockade length
R. Representative trajectories for R = 1 (upper panel) and
R = 3 (lower panel) are displayed. Blue and white indicate
excited and ground state atoms, respectively.

Fig. 2. Mean-field analysis of the dynamical phase tran-
sition. (a) Negative variational free energy −F(p, s) for
R = 3 evaluated at the stationary points including two max-
ima (red and green lines) and one minimum (blue line), and
normalized SCGF θmf(s)/L (dashed black line). Inset: Vari-
ational free energy F(p, s) as a function of p in the neigh-
borhood of s = 0. (b) Variational free energy F(p, s = 0)
for values of R around the critical value for a transition at
s = 0.


