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Emergence of Gaussian statistics as a symmetry far from equilibrium
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Suitable non-equilibrium conditions have been recently
shown to allow for symmetry emergence, as opposed to
spontaneous symmetry breaking, in extended systems [1].
A paradigmatic model in statistical physics is the stochastic
Burgers equation,

O =v020 + ApOyd + 1, (1

where 7 is space-time, white noise. Indeed, Eq. (1) appears
in many different contexts [2], see, e.g., Fig. 1. Moreover,
Eq. (1) can be generalized to higher dimension, as, e.g., [3]

Ohp = vy 030 + vy 036 + Ay §0rd + Xyd0y 6 + 1, (2)

which also generalizes the Hwa-Kardar (HK; A, = 0) equa-
tion that describes avalanches in running sandpiles [4]. Fur-
thermore, Burgers equation is strongly related with other
important models: The change of variable ¢ = 0,h trans-
forms the deterministic terms of Eq. (1) into those of the 1D
Kardar-Parisi-Zhang (KPZ) equation, another paradigm of
contemporary non-equilibrium statistical physics [5].

Both the KPZ and the stochastic Burgers equations ex-
hibit generic scale invariance [6]: The variance W2 of the
field grows up to a saturation value W2 at time tgy, such
that Wy ~ L® and tg, ~ L?, where L is the lateral size
of the system. Universality classes occur, which are charac-
terized by the values of «, z, and by the statistics of fluctu-
ations; for the 1D KPZ equation, the latter is provided by
the Tracy-Widom (TW) distribution [5], whose universal,
nonzero skewness manifests the lack of up-down symmetry
(h <> —h) of the system.

The scaling exponents of Eqgs. (1)-(2) have been investi-
gated both analytically [4, 7] and numerically [3, 8]. How-
ever, the statistics of the field had not been reported in the lit-
erature for the Burgers and Hwa-Kardar equations yet. Due
to their nonlinearities, Eqs. (1)-(2) also lack up-down sym-
metry (¢ <> —¢); hence, fluctuations in ¢ are expected to
be skewed and non-Gaussian, as in the KPZ case. However,
this seems not to be the case.

In this work [9], we revisit the universality class of the
Burgers and the (generalized) HK equations, focusing on the
statistics of fluctuations. Remarkably, these turn out to be
Gaussian, see Fig. 2. We reach this conclusion from numer-
ical simulations and from dynamic renormalization group
calculations of the skewness and kurtosis of the field ¢.

The scaling exponents of Eqgs. (1)-(2) are fixed by the hy-
perscaling (2a. + d = z4) and Galilean (« + z4 = 1) scaling
relations, induced by non-renormalization of noise and non-
linearity, respectively [3, 4, 7]. Actually, both the Gaussian
statistics and these exponent values are exact for the linear
(hence, up-down symmetric) equation

d
0 = (—Zu@l“) + 1, 3)
=1

where hat is space Fourier transform and k is wave-vector.

Fig. 1. Systems described by Egs. (1)-(2) and meaning of ¢
[2, 3, 4]: (a) traffic models (vehicle density), (c) avalanche
dynamics (pile height), (b) cosmology (mass density in the
early universe), and (d) turbulence (fluid velocity).
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Fig. 2. Normalized fluctuation histogram from numerical
simulations of the Burgers and (generalized) Hwa-Kardar
equations, Egs. (1)-(2). Here, £ = (¢ — ¢)/Var(¢).

Overall, the up-down symmetry, notably absent from
Egs. (1)-(2) themselves, emerges at the critical point which
governs their large-scale behavior, in the form of up-down-
symmetric, Gaussian fluctuations. Indeed, Gaussian statis-
tics can be expected far from equilibrium, even for systems
which are closely related with non-Gaussian, KPZ univer-
sality.
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