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An equation for biased diffusion in uniformly growing domains
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Anomalous diffusion models are a very useful tool to de-
scribe key features of biological systems where non-Fickian
transport is at play. In this context, there are numerous
examples where systematic forces influence the particle
spreading. The effect of such forces can be accounted for
by introducing a bias term in the corresponding transport
equation. A typical example is the action of a chemotactic
gradient sensed by a collection of bacteria.

While the effect of drift terms on anomalous diffusion
processes is well studied in the case of static domains, in
a wide variety of biological systems the dissemination of
the particles takes place while the medium itself grows at
a non-negligible rate. Examples include proliferative tissue
growth and the formation of pigmentation patterns in grow-
ing organisms. Considering the problem of biased anoma-
lous transport in growing domains is thus of great practical
importance.

In the above context, we shall consider the celebrated
Continuous-Time Random-Walk model (CTRW), which is
well characterized in the case of a one-dimensional static
domain [1]. In this model, particles perform instantaneous
jumps interrupted by waiting times which follow the prob-
ability density function (PDF) ϕ(t). In its simplest version,
the single-jump displacement is considered to be uncoupled
from the waiting-time PDF and given by the PDF λ∗(y).
When λ∗ has a finite variance Σ2, the system displays sub-
diffusion when the Laplace transformed waiting-time PDF
behaves as ϕ̃(s) ∼ 1 − ταsα for s → 0, where 0 < α < 1.
The case α = 1 gives rise to normal diffusion.

But, what happens if the medium expands? In this case,
the purely diffusive motion is influenced by an additional
drift arising from the stretching of physical space. Recent
works [2, 3] show that this problem is amenable to ana-
lytical treatment by switching to so-called comoving coor-
dinates x. The latter are defined as the projections of the
physical points y on the initial domain. In the case of a
uniform expansion, the relation between both sets of co-
ordinates is straightforward, i.e., y = a(t)x. In comov-
ing space, displacements are thus shortened by the inverse
scale factor 1/a(t), implying that λ∗(y) must be replaced
by λ(x, t) = a(t)λ∗(a(t)x).

The introduction of an external force field, F ∗(y, t), re-
sults in an asymmetric jump-length distribution. In the sim-
plest case, there is a linear dependence between the force
and the jump asymmetry [1]. In comoving coordinates, this
force is expressed as F (x, t) = F ∗(a(t)x, t). In the long-
time limit, the above CTRW scheme leads to the following
fractional diffusion equation
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Fig. 1. Comoving propagator at time t = 4096 for subd-
iffusive particles with α = 1/2 and Kα = 1/2 drifted by
a constant force F0 = ξα/

√
2π and an exponential expan-

sion a(t) = exp(Ht) with H = 10−4. The solid line draws
a numerical integration of Eq. (1) using the Crank-Nicolson
method [4] with time and spatial discretization of 1/10 units.
The squares are the simulation results after 106 runs. The
dashed line plots the same curve for H = 0. It has been
obtained by means of the subordination technique [1].

where Kα = Σ2/(2τα) is the diffusivity and ξα denotes the
generalized friction constant. The operator 0D

1−α
t f(t) is

defined as the inverse Laplace transform of s1−αf̃(s).
The free boundary solution of Eq. (1) for Brownian parti-

cles subjected to a constant force F0 and to the initial con-
dition W (x, 0) = δ(x) is a shifted Gaussian with time-
dependent first moment F0

∫ t
0
du a−1(u)/ξ1 and variance

2K1
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0
du a−2(u) [2]. However, the numerical integration

of Eq. (1) reveals that the propagator is non-symmetric for
subdiffusive CTRWs and it may not be represented by a suit-
able coordinate rescaling of its counterpart for the static case
(see Fig. 1). Numerical simulations based on the Monte-
Carlo algorithm confirm this finding.
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